Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Biomol Struct Dyn ; 40(10): 4532-4542, 2022 07.
Article in English | MEDLINE | ID: covidwho-972809

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an unprecedented challenge to global public health with researchers striving to find a possible therapeutic candidate that could limit the spread of the virus. In this context, the present study employed an in silico molecular interaction-based approach to estimate the inhibitory potential of the phytochemicals from ethnomedicinally relevant Indian plants including Justicia adhatoda, Ocimum sanctum and Swertia chirata, with reported antiviral activities against crucial SARS-CoV-2 proteins. SARS-CoV-2 proteins associated with host attachment and viral replication namely, spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) are promising druggable targets for COVID-19 therapeutic research. Extensive molecular docking of the phytocompounds at the binding pockets of the viral proteins revealed their promising inhibitory potential. Subsequent assessment of physicochemical features and potential toxicity of the compounds followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function revealed anisotine against SARS-CoV-2 spike and Mpro proteins and amarogentin against SARS-CoV-2 RdRp as potential inhibitors. It was interesting to note that these compounds displayed significantly higher binding energy scores against the respective SARS-CoV-2 proteins compared to the relevant drugs that are currently being targeted against them. Present research findings confer scopes to explore further the potential of these compounds in vitro and in vivo towards deployment as efficient SARS-CoV-2 inhibitors and development of novel effective therapeutics.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Iridoids , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Humans , Iridoids/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
2.
Curr Opin Environ Sci Health ; 17: 8-13, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-543058

ABSTRACT

The novel coronavirus disease 2019, a pandemic of global concern, caused by the novel severe acute respiratory syndrome coronavirus 2 has severely revealed the need for public monitoring and efficient screening techniques. Despite the various advancements made in the medical and research field, containment of this virus has proven to be difficult on several levels. As such, it is a necessary requirement to identify possible hotspots in the early stages of any disease. Based on previous studies carried out on coronaviruses, there is a high likelihood that severe acute respiratory syndrome coronavirus 2 may also survive in wastewater. Hence, we propose the use of nanofiber filters as a wastewater pretreatment routine and upgradation of existing wastewater evaluation and treatment systems to serve as a beneficial surveillance tool.

3.
Sci Total Environ ; 725: 138277, 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-31576

ABSTRACT

The novel Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, which is the causative agent of a potentially fatal disease that is of great global public health concern. The outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment regarding the urgency of the situation. The COVID-19 pandemic has entered a dangerous new phase. When compared with SARS and MERS, COVID-19 has spread more rapidly, due to increased globalization and adaptation of the virus in every environment. Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care. Hence, the recent outburst of COVID-19 highlights an urgent need for therapeutics targeting SARS-CoV-2. Here, we have discussed the structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response. Further, the current treatment options, drugs available, ongoing trials and recent diagnostics for COVID-19 have been discussed. We suggest traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL